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Phase Out of HFC Refrigerants
with a High Global Warming Potential (GWP)

ﬂ English @

Search

European Commission > Energy, Climate change, Environment > Climate Action > EU Action >

Climate Action

Home Aboutus v Climate change v EU Action v Citizens v News & Your Voice v

Contracts & Grants v

Glmate stategies & targets * Fluorinated greenhouse gases

Emissions Trading System (EU ETS) >

Effort Sharing: Member States' targets > POliC Documentation

Innovation Fund

Transport >

Fluorinated gases (‘F-gases’) are a family of man-made gases used in a range of industrial appli-

cations. Because they do not damage the atmospheric ozone layer, they are often used as sub-

Protection of the ozone layer >

stitutes for ozone-depleting substances. However, F-gases are powerful greenhouse gases, with

I LT IR e ¥ aglobal warming effect up to 23 000 times greater than carbon dioxide (CO,), and their emis-

Legislation sions are rising strongly.

Quotas & data reporting

Climate-friendly Alternatives F'gas emiSSionS tO be Cl.lt by tWO- F-gas facts
Forests and Agriculture > thlrds by 2030 in the EU

* The three groups of F-gases are hy-
Adaptation to climate change > The EU is taking regulatory action to control F-gases as drofluorocarbons (HFCs), perfluorocar-
EU budget & LIFE >  part of its policy to combat climate change. bons (PFCs) and sulphur hexafluoride
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What are the alternatives?...

Main refrigerants in play

wearet ] nr ] we

GWP
O R404A Legend
> 4,000
A1-Non-
flammable
Flammability line
O Rras2a - A2L - Mildly
<2,500 O Rr22 O R410A flammable
@ A3-Highly
(O R407A/R407F flammable
@ B2L-Toxic
less flammable
S ORi34a O RaasA (O Oldreference
(O RaasA refrigerant
New and on
O ::::: O r32 O the market
<700 O © RasaA O RasaB Notyet on
O Rs © RaaaB © Ras28B the market
R1270 R454C
@ Ri2332d © No LGWP option. O R744/CO,
<150 (ORs14A @ R600a © Ras5A Must move to
336mzzz low density . R717/NH
© R1234ze ® Rr290 3
R123 like R134a like R404A | R22 like R410A alike Others

Density
Source: www.danfoss.com
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... Low-GWP refrigerants are mildly flammable

CHsF5 + Oy = CO, + 2HF

F

! ‘@ Q@@
~N'""H
F

\H
Suitable metric?
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Challenges to describe S !...

... Flammable, but only mildly flammable Very low burning velocities!!!

> ope .o o
T ISO Flammability Classification*
o Class 3
() 50¢
2 R29( ®LFL <3.5 vol% or Hc >19 MJ kg
'% » 400 —>Class 3

g 30 R152a Class 2 ®|n Class 2, BV <10cm s

§_20- (] >Class 2L
%] 10 ®No flame propagation
'R1234 717
0 5 10 15 20 25
LFL, vol%
Low probability

Takizawa, ICR2015 Workshop on Risk Assessment of Mildly Flammable Refrigerants (1963)
*ISO817, Refrigerants—Designation and safety classification (2014)
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Challenges to describe S !...

... Flammable, but only mildly flammable Very low burning velocities!!!

1200 60 R32 phil.3 latm 298K
1000 : 50

7 40
800 :Z E 30
600 Uﬁ) 20

0 0 10 ——non-linear
400 st =5 — s Lk —LS 0
T 30 30 0 20 40 60
z/lp K[I/S]
9}

Effect of buoyancy? Effect of radiation!?

NIST = National Institute of Standards and Technology, USA
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Outline

* Experiments and Methodologies
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Experiments -
Sparse data, only about 6 groups worldwide measure refrigerents

AIST = National Institute of Advanced Industrial Science and Technology, Japan
NIST = National Institute of Standards and Technology, USA

RWTH = RWTH Aachen University, Germany

UTRC = United Technologies Research Center

MINES = Mines Paris Tech, France

KR = R&D Center, Korean Register of Shipping, Korea
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Methodologies — pressure based
Data reduction process (S,)

Fiock and Marvin: RS — R; AP Power law surface, ¢& [2I;

tR3y, P dt

—

Su(TU7P) - Su,ref
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Time Pressure Time

Fiock and Marvin, Chem. Rev. (1937)
Takizawa et al, ASHRAETransactions (2013) HTDR = Hybrid ThermoDynamic-Radiation
R. Burell et al., Proc. Combust. Inst. (2019) RADCAL = Radiation Calculations
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Methodologie
Extrapolation

s — optical based
to zero stretch (S,;)

Propagation speed :
o dry

T
Stretch:

Linear model:

0 —
sy — Sp = Lpk

_ Q,Cblél B experiments
88 extrapolation:
) 5 linear -
4‘Cb 16£b 4 Ly 4 - = = nonlinear
2 + 3 3 +o o =1
0 0
Sp 20 2 ,Cb — 0 P
i (2420 - 200, .
Sy Ty T _-"
6 !Halter et al, Combust. Flame (2010) - T
2Kelly and Law, Combust. Flame (2009) -
3Frankel and Sivashinsky. Combust. Sci. Technol. (1983) -7 i ) ; i
“Kelly et al, |. Fluid Mech. (2012
Y et al | Fluid Mech. (2012) 200 400 600 800

5Liang et al,, Proc. Combust. Inst.(2017)
¢Wu et al, Proc. Combust. Inst.(2015)

High speed Schlieren arrangement: |. Beeckmann et al., Fuel (2014)
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Outline

e Results
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Results comparison - R32 case

Literature
R32 phil.3 latm 298K
. Difluoromethane/air
I 1 atm /298 K| 60
50
2 40
6 : £ 30
@ o 20
= “ 10
2 0
T4+ Sim. NIST HFC mech .
— ]
e % NIST prs. method OTM (2018) 0 20y [14}8} %0
% NIST prs. method AD (2018)
2 X NIST shadography (2017)
o Moghaddas prs. method (2014) atmospheric conditions difficult to measure
X Takizawa (2005) : . .
. o abbour 0004 | | (high sens. to stretch & small density gradient)
0.6 0.8 1.0 1.2 1.4 1.6

equivalence ratio / -

In order to reduce exp. uncetainty = increase p and T
Beeckmann et al., Proc. Combust. Inst. (2019)

Simulation performed with detailed mechanism provided by NIST: R. Burgess, Jr et al,, submitted to Combust. Flame (2019)
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Results comparison - R32 case
Higher pressure and temperature

70 FDifluoromethane/air
r3 bar/ 333 K

r=1.5 cm

N
)
T

' E Exp. ITV o ¢=1.1 |
107 S T Linear extrapolation A ¢=13 ;
0 o — Non-linear extrapolation <>. ¢ = 1|.5 1

0 20 40 60 80 100 120 140

stretch rate k / 1/s

Marginal influence of
gravitation visible

Elevated pressure reduces sensitivity to stretch
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Results comparison - R32 case
Pressure and temperature sensitivity

12 b ! ' ! —- 1 12 T T T T T T T T T T
10 ;]2)1;luoromethane/ ar # S | Difluoromethane/air Temperature T, |
gh ' 10 L2 bar e 208K |
: e 333K
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® b ) 8 il
E -7 ~
2 4 I ; 5 6L
i JEUESEE " Present study ] ,
3f-- % ) e [TV Schlieren method ] “
- . ] 4 Present study
Extrapolation .
i o =11 Sim. NIST HEC mech.] e [TV Schlieren method
2 . $=13 Literature T ) . Sim. NIST HFC mech.
e =15 %  NIST prs. method ( Literature
. ' : #  NIST prs. method
298 333 373 ol T emmemel

0.6 0.8 1.0 1.2 1.4 1.6

equivalence ratio / -

temperature / K

Agreement seems within the limits of comparison >>> OTM vs adiabatic

Simulation performed with detailed mechanism provided by NIST: R. Burgess, Jr et al,, submitted to Combust. Flame (2019)
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Results comparison - R32 case
ITV data scaled to ambient conditions

,I. Scatter between 10 to 15% |

Difluoromethane/air Little take away:

81 ] atm /298 K
= Often LBV obtained with adiabatic model
6L | - Influence of radiation unknown
é = Big scatter between adiabatic and radiation
Q ® Exp. ITV (scaled) result
;q 4+ Sim. NIST HFC mech

= Suitability of the different measurement

NIST prs. method OTL (2018) ?
techniques has to be further assessed:

NIST prs. method ADL (2018)

%
*
2 K NIST shadography (2017)
O Moghaddas prs. method (2014) = Assumption of perfect spheres
X Takizawa (2005) ' ->Which flame radius for flame speed
0 T Jabbour vert. tube (2004) . extraction in buoyant flames?

0.6 0.8 1.0 1.2 1.4 1.6 = No stretch effects taken into account in
equivalence ratio / - pressure model (+/- 12 %')

Assess buoyancy and radiation effects by DNS simulations

'Burrel et al., Proc. Combust. Inst. (2019)
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Results comparison - R32 case
Radiation

S ao(Th T Species:
Q=40(T"=T,") ) Pi%)  CO, CO,H,0, CH, HF
i

with radiation

R-32 spherical flame
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Simulation with FlameMaster code, |D spherical flame module
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Results comparison - R32 case

Radiation
80 | Difluoromethane/air 2 bar / 333K/$=1.0 Little more take away:
7()}_ r=1.5 cm o " Exp. raw data can be used together:
60

= Upper limit (adiabatic, red circle)
= Lower limit (OTM, black circle)

= Exp. data do not need to be between

(TS
-

—
o)

_ Exp. ITV ] simulation before mechanism modification
20k ----- Linear extrapolation
. T —— Non-linear extrapolation-
10 .~ Sim. ADL .
s Sim. OTL 1
O S, ] ) 1 . 1 . 1 ) 1 )

0 20 40 60 80 100 120 | 140

stretch rate x / 1/s

Simulation with FlameMaster code, |D spherical flame module
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Results comparison - R32 case
Radiation

1 2 T T T T T T T T |
 Difluoromethane/air emnacgture T, Little more take away:
10 | 2 bar 3 A Scatter 8.3% g
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Simulation with FlameMaster code, |D spherical flame module
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Results — DNS simulation Berger et al.;

Buoyancy ECM 2019 Poster

DNS:

CH4/ ¢ =0.6/25bar /298 K

g ! 1K
periodic ! |
I
: |
Lax | > :
" I
. I
1 I
" I
___________ ]
L_R——’) si::/_nr/
Laser ignition Variation of flame speed by dilution
® Diluted H, (¢ = 1.8, T, = 298K, p = 1bar)
m CH,
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Results — DNS simulation Berger et al.;
Buoyancy ECM 2019 Poster

Diluted H, (¢ = 1.8, T, = 298K, p = 1bar)
DNSI'I:

n g
Lax
Temperature [K]
Variation of flame speed by dilution
® Diluted H, (¢ = 1.8, T, = 298K, p = 1bar)
m CH,
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Results — DNS simulation
Buoyancy

H2/0'2/N2:dilu‘[‘i0n Take away:
Le=1

= Exp. post processing tools either:
* Underpredict (Area Eval.)

§ ' TN T -] = Overpredict (Hor. Radii Eval.)

/A dV/dt .

Area Eval. ' with unstretched value

5 Hor. Radii Eval.
S Linear extrapolation
0 . . | — Non-linear extrapolation
0 10 20 30 40 50 60
stretch rate k / 1/s
Method |/A dV/dt seems promising
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Outline

* Summary/Outlook
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Summary/Outlook

Summary:

Non-linearities in extrapolation very pronounce at ambient conditions
—> Increase pressure and temperature to use linear extrapolation

Effect of radiation is very pronounce and cannot be described satisfactory

Buoyancy for R32 in acceptable range

o Utl oo k (I): 80 —DiﬂU(')rometl'lane/ai'r ' 2 bar'/ 333 Kv/¢ - '1.0- ® utl 00 k (I I): 0 , ‘ }l /! HZ/OZ/NZ;dilution

Le=1

Uncertainty description el PIV measurements e o

70 + . - o r=>1.5cm

due to radiation (model) I = |} New methodology [ORE
B 30 * : r/ ¢ /A dV/dt

I nveStigate St retCh/Strai n 20 : / e : Linear extrapolation | fO r b u Oyant fla.m es / Py Exp. post-processing tool

' ] +  AreaEval.
Non-linear extrapolation = Hor. Radii Eval.

Quantify effect Of ‘. - . _2:2 g?l]: . . ] based on: : Linear extrapolation

Non-linear extrapolation

.. . . 20 40 60 80 100 120 140 H I y
radiation in experiments experiments/DNS 000 A0 @

stretch rate k / 1/s

stretch rate x / 1/s
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Driving questions:

Summary:
What uncertainty do we need for flammability metrics?
Is 15% enough!?
Hybrid method:

o How to use optical and pressure based method best? (also couple together with simulations?)

What is limit for buoyant flames?

o Utl oo k (I): 80 —DiﬂU(')romet}'lane/ai'r ' 2 bar'/ 333 Kv/¢ - '1.0- ® utl 00 k (I I): 0 , ‘ }l /! HZ/OZ/NZ;dilution

70l r=>1.5cm _L_-ezl

Uncertainty description e Ik PIV measurements e /. o

due to radiation (model) £l = |} New methodology [ORT
* 30 i 1/A dV/dt

I nveStigate St retCh/Strai n 20 : P ) P ° Linear extrapolation | fO r bO uya nt flam eS % Exp. post-processing tool

. . 9 +  AreaEval.
Non-linear extrapolation]

S i ] . * Hor. Radii Eval.
Quantify effect of @ ||| basedon: i ocemoiin

.. . . 20 40 60 80 100 120 140 H I y
radiation in experiments experiments/DNS 000 A0 @

stretch rate k / 1/s

stretch rate x / 1/s
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