High-temperature laminar burning velocity experiments in a shock tube: LBV, temperature, and species measurements

Alison M. Ferris, Adam J. Susa, Julian J. Girard, David F. Davidson, Ronald K. Hanson High Temperature Gasdynamics Laboratory Department of Mechanical Engineering, Stanford University

> LBV Workshop 2019 Lisbon, Portugal April 14, 2019

Motivation: Why study flames in a shock tube?

- Limited flame speed data at high unburned gas T (>500 K)
- Shock tubes are ideal reactors for studying high-temperature combustion phenomena
 - Tunable T & P
 - Near-instantaneous heating (well-defined time zero)

Overview of Experiments

Goal: Use a shock tube to <u>extend</u> the temperature regime accessible by existing laminar flame speed measurement approaches

First, the approach...

Experimental Setup: Laminar flames in a shock tube

Laminar flames are initiated behind reflected shock waves via laser-induced spark ignition

Shock tube

- 11.53-cm inner diameter
- 3.63-m driver, 9.73-m driven
- Test times: 3.5-15 ms (N₂, He, CO₂ driver)

Nd:YAG laser

532 nm, 5 ns pulse, ~18 mJ/pulse

High-speed OH* emission (306 nm) imaging

UV-intensified, endwall emission

OH* Emission Images

Example: raw images (OH* emission, 306 nm) C_2H_6 in air, $\Phi = 1.0$, **488 K, 1.0 atm**

Field of View: Shock tube endwall

- UV-intensified OH* emission imaging
- 10-40 kHz frame rate
- 90-140 µm/pixel
- Field of view:
 - > 5.17 x 5.17 cm (384 x 384 pixels)
 - > 10 cm from shock tube endwall

Image Processing

- Local stretch rate (κ) and burned flame speed (S_b) calculated at regular intervals around circumference of flame
- Quasi-steady subset of S_bvs κ data selected for unstretched flame speed extrapolation [1]

$$S_b^2 - S_b^o S_b = -S_b^o L_b \kappa \qquad \rho_u S_u^o = \rho_b S_b^o$$

Stanford University

6

Mixture	CH₄/air	C₂H₅/air
Φ	1.0	1.0
T _{unburned} (K)	489-573 K	449-537 K
Pressure (atm)	1.0 ± 0.05	1.0 ± 0.05

I. Small Hydrocarbons

CH₄ and C₂H₆ flame speed measurement results:

The high-temperature C_2H_6 flame speed results have not yet been published, and have therefore been removed from the publicly distributed version of this talk.

- CH₄ results are 5-10% higher than model results
 - > Only one other high-T CH₄ data set in literature

The CH_4 flame speed results are available in: A.M. Ferris, A.J. Susa, D.F. Davidson, R.K. Hanson, Combust. Flame, 2019, DOI: 10.1016/j.combustflame.2019.04.007

 C₂H₆ results show close agreement with USC Mech results, higher disagreement with Aramco results

Mixture	C₃H₀/air	C ₃ H ₈ /modified-air
Φ	1.0	0.8
T _{unburned} (K)	391-556 K	764-832 K
Pressure (atm)	1.0 ± 0.05	1.0 ± 0.05

I. Small Hydrocarbons

C₃H₈ flame speed measurement results:

 Results show excellent agreement with model and (available) literature results

The C_3H_8 flame speed results are available in: A.M. Ferris, A.J. Susa, D.F. Davidson, R.K. Hanson, Combust. Flame, 2019, DOI: 10.1016/j.combustflame.2019.04.007

8

 Disagreement between model results at higher temperatures highlights need for high-T flame speed validation data

II. Laser Diagnostics

Iris

 I_{0} 4.19 um CO₂

2.48 um H₂O

Two time-multiplexed, scanned-direct absorption diagnostics were used to

measure temperature, CO_2 , and H_2O in C_2H_6 -air flames:

• H₂O:

532 nm

1 transition near 2.48 µm (4029.52 cm⁻¹) [2]

CO₂ and Temperature:

2 transitions near 4.19 μm (2384.19, 2384.33 cm⁻¹) [3]

Transmitted

 $\alpha_{\rm v} = -\ln\left(\frac{1}{2}\right)$

action Path length $X_{Abs}P \xrightarrow{} I$

Absorption cross-section

Mole fraction

 OH* emission images used to determine timedependent path length, L

Stanford University

[2] Goldenstein et al., J. Quant. Spectrosc. Radiat. Transf. 130 (2013) 100-111.[3] Girard et al., Combust. Flame 178 (2017) 158-167.

10-cm Measurement Plane View

II. Laser Diagnostics: T measurement results

Note: the temperature laser absorption results have not yet been published; the corresponding plots have therefore been removed from the publicly distributed version of this talk.

Time-resolved temperature measurements show:

- Burned gas temperature increases for the first 5-6 ms, then ultimately plateaus to a final, equilibrium burned gas temperature
- Constant long-time temperature indicates minimal radiative losses

Equilibrium burned gas temperature measurements, measured for each ethane-air flame experiment (1 atm, 449-537 K), show:

 Excellent agreement with AramcoMech 3.0 and USC Mech II modeled results across the entire temperature range (within ±3.2% uncertainty)

II. Laser Diagnostics: Mole fraction results (equilibrium)

Note: the CO_2 and H_2O laser absorption results have not yet been published; the corresponding plots have therefore been removed from the publicly distributed version of this talk.

Equilibrium CO₂ mole fraction measurements show:

 Good agreement with model results (AramcoMech 3.0, USC Mech II), within uncertainty bounds (±9.2%)

Equilibrium H₂O mole fraction measurements show:

- Satisfactory agreement with model results, within uncertainty bounds (±10%)
 - > Higher scatter likely due to background signal fluctuations

III. NTC Regime: iso-octane

Iso-octane burning velocity measurements in $O_2/N_2/He$:

- Φ = 0.9 fuel in 18% O₂, 41% N₂, 41% He
- 500-900 K, 1 atm (±5%)

IDT >> experiment time: no pre-flame reactions expected in bulk gas

III. NTC Regime: iso-octane

Iso-octane burning velocity measurements in $O_2/N_2/He$:

- Φ = 0.9 fuel in 18% O₂, 41% N₂, 41% He
- 500-900 K, 1 atm (±5%)
- 1. Burning velocity increases w/T (500-600 K)
 - > Results 20-30% low of simulation
- 2. Burning velocity T dependence stronger than modeled (600-750 K)
- 3. Negative T dependence of burning velocity (750-820 K)
- 4. Excellent model agreement, then stronger T dependence than modeled (820-900 K)

The NTC-regime *iso*-octane flame speed results have not yet been published, and have therefore been removed from the publicly distributed version of this talk.

The NTC-regime *iso*-octane flame speed results show different behaviors over 4 distinct temperature ranges

First direct experimental evidence of NTC flame speed behavior

Summary & Future Work

Summary:

- High-temperature CH₄, C₂H₆, and C₃H₈ flame speeds show close agreement with literature and model results
- Laser absorption diagnostics were successfully deployed to measure temperature, CO₂, and H₂O
- Iso-octane flame speed results show evidence of NTC behavior the first such experimental observation

Future work:

- Extend high-temperature flame speed data sets
 - > Additional temperatures, pressures, equivalence ratios
- Use quantitative laser diagnostics to probe NTC flame speed behavior (cool flames?)
- Simulate results as spherically expanding flames using DNS

Acknowledgements

- U.S. Army Research Laboratory & the U.S. Army Research Office (contract/grant number W911NF-17-1-0420)
 - Dr. Ralph Anthenien

Questions?