High-temperature laminar burning velocity experiments in a shock tube: LBV, temperature, and species measurements

Alison M. Ferris, Adam J. Susa, Julian J. Girard, David F. Davidson, Ronald K. Hanson
High Temperature Gasdynamics Laboratory
Department of Mechanical Engineering, Stanford University

LBV Workshop 2019
Lisbon, Portugal
April 14, 2019
Motivation: Why study flames in a shock tube?

- Limited flame speed data at high unburned gas T (>500 K)
- Shock tubes are ideal reactors for studying high-temperature combustion phenomena
 - Tunable T & P
 - Near-instantaneous heating (well-defined time zero)
Overview of Experiments

Goal: Use a shock tube to extend the temperature regime accessible by existing laminar flame speed measurement approaches

Laminar flame speed experiments in a shock tube

I. Small Hydrocarbons
High-temperature flame speed measurements: CH₄, C₂H₆, C₃H₈

II. Laser Diagnostics
Temperature and species (CO₂ & H₂O) measurements in C₂H₆-air flames

III. NTC Regime
Iso-octane flame speed measurements in the NTC regime

First, the approach...
Experimental Setup: Laminar flames in a shock tube

Laminar flames are initiated behind reflected shock waves via laser-induced spark ignition

Shock tube
- 11.53-cm inner diameter
- 3.63-m driver, 9.73-m driven
- Test times: 3.5-15 ms (N₂, He, CO₂ driver)

Nd:YAG laser
- 532 nm, 5 ns pulse, ~18 mJ/pulse

High-speed OH* emission (306 nm) imaging
- UV-intensified, endwall emission
OH* Emission Images

Example: raw images (OH* emission, 306 nm)
- C$_2$H$_6$ in air, $\Phi = 1.0$, 488 K, 1.0 atm

- UV-intensified OH* emission imaging
- 10-40 kHz frame rate
- 90-140 µm/pixel

- Field of view:
 - 5.17 x 5.17 cm (384 x 384 pixels)
 - 10 cm from shock tube endwall
Local stretch rate (κ) and burned flame speed (S_b) calculated at regular intervals around circumference of flame

- Quasi-steady subset of S_b vs κ data selected for unstretched flame speed extrapolation [1]

\[
S_b^2 - S_b^0 S_b = -S_b^0 L_b \kappa \\
\rho_u S_u^0 = \rho_b S_b^0
\]

I. Small Hydrocarbons

CH$_4$ and C$_2$H$_6$ flame speed measurement results:

<table>
<thead>
<tr>
<th>Mixture</th>
<th>CH$_4$/air</th>
<th>C$_2$H$_6$/air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$T_{unburned}$ (K)</td>
<td>489-573 K</td>
<td>449-537 K</td>
</tr>
<tr>
<td>Pressure (atm)</td>
<td>1.0 ± 0.05</td>
<td>1.0 ± 0.05</td>
</tr>
</tbody>
</table>

- CH$_4$ results are 5-10% higher than model results
 - Only one other high-T CH$_4$ data set in literature

- C$_2$H$_6$ results show close agreement with USC Mech results, higher disagreement with Aramco results

The high-temperature C$_2$H$_6$ flame speed results have not yet been published, and have therefore been removed from the publicly distributed version of this talk.

The CH$_4$ flame speed results are available in: A.M. Ferris, A.J. Susa, D.F. Davidson, R.K. Hanson, Combust. Flame, 2019, DOI: 10.1016/j.combustflame.2019.04.007
I. Small Hydrocarbons

C_3H_8 flame speed measurement results:

- Results show excellent agreement with model and (available) literature results
- Disagreement between model results at higher temperatures highlights need for high-T flame speed validation data

The C_3H_8 flame speed results are available in: A.M. Ferris, A.J. Susa, D.F. Davidson, R.K. Hanson, Combust. Flame, 2019, DOI: 10.1016/j.combustflame.2019.04.007

<table>
<thead>
<tr>
<th>Mixture</th>
<th>C_3H_8/air</th>
<th>C_3H_8/modified-air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>T_unburned (K)</td>
<td>391-556 K</td>
<td>764-832 K</td>
</tr>
<tr>
<td>Pressure (atm)</td>
<td>1.0 ± 0.05</td>
<td>1.0 ± 0.05</td>
</tr>
</tbody>
</table>
II. Laser Diagnostics

- Two time-multiplexed, scanned-direct absorption diagnostics were used to measure temperature, CO$_2$, and H$_2$O in C$_2$H$_6$-air flames:
 - **H$_2$O:**
 - 1 transition near 2.48 µm (4029.52 cm$^{-1}$) [2]
 - **CO$_2$ and Temperature:**
 - 2 transitions near 4.19 µm (2384.19, 2384.33 cm$^{-1}$) [3]
 - OH* emission images used to determine time-dependent path length, L

Beer-Lambert Relation:

$$\alpha_{\nu} = -\ln \left(\frac{I_T}{I_o} \right)_{\nu} = \frac{X_{Abs}P}{RT} \sigma_{\nu} L$$

II. Laser Diagnostics: T measurement results

Note: the temperature laser absorption results have not yet been published; the corresponding plots have therefore been removed from the publicly distributed version of this talk.

Time-resolved temperature measurements show:
- Burned gas temperature increases for the first 5-6 ms, then ultimately plateaus to a final, equilibrium burned gas temperature
- Constant long-time temperature indicates minimal radiative losses

Equilibrium burned gas temperature measurements, measured for each ethane-air flame experiment (1 atm, 449-537 K), show:
- Excellent agreement with AramcoMech 3.0 and USC Mech II modeled results across the entire temperature range (within ±3.2% uncertainty)
II. Laser Diagnostics: Mole fraction results (equilibrium)

Note: the CO₂ and H₂O laser absorption results have not yet been published; the corresponding plots have therefore been removed from the publicly distributed version of this talk.

Equilibrium CO₂ mole fraction measurements show:

- Good agreement with model results (AramcoMech 3.0, USC Mech II), within uncertainty bounds (±9.2%)

Equilibrium H₂O mole fraction measurements show:

- Satisfactory agreement with model results, within uncertainty bounds (±10%)
 - Higher scatter likely due to background signal fluctuations
III. NTC Regime: *iso*-octane

iso-octane burning velocity measurements in $O_2/N_2/He$:

- $\Phi = 0.9$ fuel in 18% O_2, 41% N_2, 41% He
- 500-900 K, 1 atm ($\pm 5\%$)

IDT $>>$ experiment time: no pre-flame reactions expected in bulk gas
III. NTC Regime: *iso*-octane

Iso-octane burning velocity measurements in $O_2/N_2/He$:

- $\Phi = 0.9$ fuel in 18% O_2, 41% N_2, 41% He
- 500-900 K, 1 atm (\pm 5%)

1. Burning velocity increases w/ T (500-600 K)
 ‣ Results 20-30% low of simulation
2. Burning velocity T dependence stronger than modeled (600-750 K)
3. Negative T dependence of burning velocity (750-820 K)
4. Excellent model agreement, then stronger T dependence than modeled (820-900 K)

First direct experimental evidence of NTC flame speed behavior

The NTC-regime *iso*-octane flame speed results have not yet been published, and have therefore been removed from the publicly distributed version of this talk.
Summary & Future Work

Summary:

- High-temperature CH$_4$, C$_2$H$_6$, and C$_3$H$_8$ flame speeds show close agreement with literature and model results
- Laser absorption diagnostics were successfully deployed to measure temperature, CO$_2$, and H$_2$O
- *Iso*-octane flame speed results show evidence of NTC behavior – the first such experimental observation

Future work:

- Extend high-temperature flame speed data sets
 - Additional temperatures, pressures, equivalence ratios
- Use quantitative laser diagnostics to probe NTC flame speed behavior (cool flames?)
- Simulate results as spherically expanding flames using DNS
Acknowledgements

- U.S. Army Research Laboratory & the U.S. Army Research Office (contract/grant number W911NF-17-1-0420)
 - Dr. Ralph Anthenien

Questions?