High-temperature laminar burning velocity experiments in a shock tube: LBV, temperature, and species measurements

Alison M. Ferris, Adam J. Susa, Julian J. Girard, David F. Davidson, Ronald K. Hanson High Temperature Gasdynamics Laboratory
Department of Mechanical Engineering, Stanford University
LBV Workshop 2019
Lisbon, Portugal
April 14, 2019

Motivation: Why study flames in a shock tube?

- Limited flame speed data at high unburned gas T (>500 K)
- Shock tubes are ideal reactors for studying high-temperature combustion phenomena
, Tunable T \& P
, Near-instantaneous heating (well-defined time zero)

Overview of Experiments

Goal: Use a shock tube to extend the temperature regime accessible by existing laminar flame speed measurement approaches

Laminar flame speed experiments in a shock tube

First, the approach...

Experimental Setup: Laminar flames in a shock tube

Laminar flames are initiated behind reflected shock waves via laser-induced spark ignition

Shock tube

- $11.53-\mathrm{cm}$ inner diameter
- 3.63-m driver, 9.73-m driven
- Test times: $3.5-15 \mathrm{~ms}\left(\mathrm{~N}_{2}, \mathrm{He}, \mathrm{CO}_{2}\right.$ driver $)$

Nd:YAG laser

- $532 \mathrm{~nm}, 5 \mathrm{~ns}$ pulse, $\sim 18 \mathrm{~mJ} /$ pulse

High-speed OH^{*} emission (306 nm) imaging

- UV-intensified, endwall emission

OH* Emission Images

Example: raw images (OH^{*} emission, 306 nm) $\mathrm{C}_{2} \mathrm{H}_{6}$ in air, $\Phi=1.0,488 \mathrm{~K}, 1.0 \mathrm{~atm}$

Field of View:
Shock tube endwall

- UV-intensified OH^{*} emission imaging
- 10-40 kHz frame rate
- 90-140 $\mu \mathrm{m} / \mathrm{pixel}$
- Field of view:
, $5.17 \times 5.17 \mathrm{~cm}$ (384×384 pixels)
, 10 cm from shock tube endwall

Image Processing

- Local stretch rate (κ) and burned flame speed (S_{b}) calculated at regular intervals around circumference of flame
- Quasi-steady subset of S_{b} vs κ data selected for unstretched flame speed extrapolation [1]

$$
S_{b}^{2}-S_{b}^{o} S_{b}=-S_{b}^{o} L_{b} \kappa \quad \rho_{u} S_{u}^{o}=\rho_{b} S_{b}^{o}
$$

I. Small Hydrocarbons

Mixture	$\mathbf{C H}_{4} /$ air	$\mathbf{C}_{2} \mathbf{H}_{6} /$ air
Φ	1.0	1.0
$\mathbf{T}_{\text {unburned }}(\mathrm{K})$	$489-573 \mathrm{~K}$	$449-537 \mathrm{~K}$
Pressure (atm)	1.0 ± 0.05	1.0 ± 0.05

CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ flame speed measurement results:

- CH_{4} results are $5-10 \%$ higher than model results
, Only one other high- TCH_{4} data set in literature
- $\mathrm{C}_{2} \mathrm{H}_{6}$ results show close agreement with USC Mech results, higher disagreement with Aramco results

I. Small Hydrocarbons

Mixture	$\mathrm{C}_{3} \mathrm{H}_{8} /$ air	$\mathrm{C}_{3} \mathrm{H}_{8} /$ modified-air
Φ	1.0	0.8
$\mathrm{~T}_{\text {unburned }}(\mathrm{K})$	$391-556 \mathrm{~K}$	$764-832 \mathrm{~K}$
Pressure (atm)	1.0 ± 0.05	1.0 ± 0.05

$\mathrm{C}_{3} \mathrm{H}_{8}$ flame speed measurement results:

- Results show excellent agreement with model and (available) literature results

The $\mathrm{C}_{3} \mathrm{H}_{8}$ flame speed results are available in: A.M. Ferris, A.J. Susa, D.F. Davidson, R.K. Hanson, Combust. Flame, 2019, DOI: 10.1016/j.combustflame.2019.04.007

- Disagreement between model results at higher temperatures highlights need for high-T flame speed validation data

II. Laser Diagnostics

- Two time-multiplexed, scanned-direct absorption diagnostics were used to

, OH^{*} emission images used to determine timedependent path length, L

II. Laser Diagnostics: T measurement results

Note: the temperature laser absorption results have not yet been published; the corresponding plots have therefore been removed from the publicly distributed version of this talk.

Time-resolved temperature measurements show:

- Burned gas temperature increases for the first 5-6 ms, then ultimately plateaus to a final, equilibrium burned gas temperature
- Constant long-time temperature indicates minimal radiative losses

Equilibrium burned gas temperature measurements, measured for each ethane-air flame experiment (1 atm, 449-537 K), show:

- Excellent agreement with AramcoMech 3.0 and USC Mech II modeled results across the entire temperature range (within $\pm 3.2 \%$ uncertainty)

II. Laser Diagnostics: Mole fraction results (equilibrium)

Note: the CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ laser absorption results have not yet been published; the corresponding plots have therefore been removed from the publicly distributed version of this talk.

Equilibrium CO_{2} mole fraction measurements show:

- Good agreement with model results (AramcoMech 3.0, USC Mech II), within uncertainty bounds ($\pm 9.2 \%$)

Equilibrium $\mathrm{H}_{2} \mathrm{O}$ mole fraction measurements show:

- Satisfactory agreement with model results, within uncertainty bounds ($\pm 10 \%$)
, Higher scatter likely due to background signal fluctuations

III. NTC Regime: iso-octane

Iso-octane burning velocity

 measurements in $\mathrm{O}_{2} / \mathrm{N}_{2} / \mathrm{He}$:- $\Phi=0.9$ fuel in $18 \% \mathrm{O}_{2}, 41 \% \mathrm{~N}_{2}$, 41\% He
- $500-900 \mathrm{~K}, 1 \mathrm{~atm}(\pm 5 \%)$

IDT >> experiment time: no pre-flame reactions expected in bulk gas

III. NTC Regime: iso-octane

Iso-octane burning velocity

 measurements in $\mathrm{O}_{2} / \mathbf{N}_{\mathbf{2}} / \mathrm{He}$:- $\Phi=0.9$ fuel in $18 \% \mathrm{O}_{2}, 41 \% \mathrm{~N}_{2}$, 41\% He
- $500-900 \mathrm{~K}, 1 \mathrm{~atm}(\pm 5 \%)$

1. Burning velocity increases w/T (500-600 K) , Results 20-30\% low of simulation
2. Burning velocity T dependence stronger than modeled (600-750 K)
3. Negative T dependence of burning velocity (750-820 K)
4. Excellent model agreement, then stronger T dependence than modeled (820-900 K)

Summary \& Future Work

Summary:

- High-temperature $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and $\mathrm{C}_{3} \mathrm{H}_{8}$ flame speeds show close agreement with literature and model results
- Laser absorption diagnostics were successfully deployed to measure temperature, CO_{2}, and $\mathrm{H}_{2} \mathrm{O}$
- Iso-octane flame speed results show evidence of NTC behavior - the first such experimental observation

Future work:

- Extend high-temperature flame speed data sets
, Additional temperatures, pressures, equivalence ratios
- Use quantitative laser diagnostics to probe NTC flame speed behavior (cool flames?)
- Simulate results as spherically expanding flames using DNS

Acknowledgements

- U.S. Army Research Laboratory \& the U.S. Army Research Office (contract/grant number W911NF-17-1-0420)
- Dr. Ralph Anthenien

Questions?

