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Motivation: Why study flames in a shock tube?
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Overview of Experiments

Goal: Use a shock tube to extend the temperature regime accessible
by existing laminar flame speed measurement approaches

| Laminar flame speed experiments in a shock tube |

L\

|. Small Hydrocarbons ll. Laser Diagnhostics lll. NTC Regime

High-temperature flame Temperature and species Iso-octane flame speed
speed measurements: (CO, & H,0) measurements measurements in the
CH,, C,Hg, C3Hg in C,Hg-air flames NTC regime

First, the approach...
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Experimental Setup: Laminar flames in a shock tube

Laminar flames are initiated behind reflected
shock waves via laser-induced spark ignition

Shock tube

= 11.53-cm inner diameter

= 3.63-m driver, 9.73-m driven

= Test times: 3.5-15 ms (N,, He, CO, driver)

Nd:YAG laser
= 532 nm, 5 ns pulse, ~18 mJ/pulse

High-speed OH* emission (306 nm) imaging
=  UV-intensified, endwall emission
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OH* Emission Images

Example: raw images (OH* emission, 306 nm)
C,Hg in air, ® = 1.0, 488 K, 1.0 atm

5.17 cm

Field of View:

Shock tube endwall

Pressure (atm)

UV-intensified OH* emission imaging
10-40 kHz frame rate
90-140 um/pixel

Field of view:
> 5.17 x 5.17 cm (384 x 384 pixels)
> 10 cm from shock tube endwall
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Image Processing
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= Local stretch rate (k) and burned flame speed (S,) calculated at regular
intervals around circumference of flame

= Quasi-steady subset of S,vs k data selected for unstretched flame speed
extrapolation [1]

Sp —SpSp = —=SpLpk PuSy = PpSp

[1] M.L. Frankel, G.I. Sivashinsky, Combust. Sci. Technol. 31 (3-4) 131-138 (1983).
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Mixture CH,/air C,Hg/air
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CH, and C,H, flame speed measurement results:
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= CH, results are 5-10% higher than

model results
> Only one other high-T CH, data set in literature

The CH, flame speed results are available in: A.M. Ferris, A.J. Susa, D.F. Davidson, R.K.
Hanson, Combust. Flame, 2019, DOI: 10.1016/j.combustflame.2019.04.007

= C,H results show close agreement
with USC Mech results, higher
disagreement with Aramco results
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C;Hg flame speed measurement results:

175 ] .I 'I"hislwoi’k T T T T T T T T T T 450 .. ,Th.. T I; T T T T T
1504 a Zhao 2004 ] 425 i Is WolrvI a0
o Tang 2010 1 ramcoiiech .
1 2 Veloo 2011 4009 ——LLNL ]
125+ Gong 2015 . 375, P
1=-= AramcoMech 3.0 1 C3H8 (T > 75OK) ol

—~100+——LLNL 1 @ 350 g ]

£ - --uscMechil i - £ 325 ' ’

o === Y 2 k. = . S—

e 75_ : 2”300 -
50 1 - 2754 C,H /modified air ]
- CHyfair 25017 _.- (21.0% O,, 47.4% N,, 31.6% He)-

1 =1.0 7 - - ]
| C3Hg (T < 560K) o 225- 0=08 ]
O I 4 ) i I " ' i ) " I 4 1 ? mI 200 ] T T v T T T T T T 1| at'rn T T T T
300 350 400 450 500 550 600 650 700 725 750 775 800 825 850 875 900
unburned (K) unburned (K)

= Results show excellent agreement with =
model and (available) literature results

The C3Hg flame speed results are available in: A.M. Ferris, A.J. Susa, D.F. Davidson, R.K.
Hanson, Combust. Flame, 2019, DOI: 10.1016/j.combustflame.2019.04.007

Disagreement between model results at
higher temperatures highlights need for
high-T flame speed validation data




Il. Laser Diagnhostics
= Two time-multiplexed, scanned-direct absorption diagnostics were used to
measure temperature, CO,, and H,O in C,H;-air flames:
= H,0:

> 1 transition near 2.48 um (4029.52 cm?) [2]
= CO, and Temperature:

» 2 transitions near 4.19 um (2384.19, 2384.33 cm) [3]

Beer-Lambert Relation:

Transmitted  Mole fraction Path length

1T> NXapsP
(0}

= —In[L
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Absorption cross-section

|, 419 um co,

A
| 2.48 um H,0 bsorbance
0 10-cm Measurement > OH* emission images used to determine time-
Plane View dependent path length, L
[2] Goldenstein et al., J. Quant. Spectrosc. Radiat. Transf. 130 (2013) 100-111. Stanford University

[3] Girard et al., Combust. Flame 178 (2017) 158-167.



Il. Laser Diagnostics: T measurement results

Note: the temperature laser absorption results have not yet been published; the corresponding plots
have therefore been removed from the publicly distributed version of this talk.

Time-resolved temperature measurements show:

= Burned gas temperature increases for the first 5-6 ms, then ultimately
plateaus to a final, equilibrium burned gas temperature

= Constant long-time temperature indicates minimal radiative losses

Equilibrium burned gas temperature measurements, measured for each
ethane-air flame experiment (1 atm, 449-537 K), show:

= Excellent agreement with AramcoMech 3.0 and USC Mech Il modeled
results across the entire temperature range (within £3.2% uncertainty)
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Il. Laser Diagnostics: Mole fraction results (equilibrium)

Note: the CO, and H,O laser absorption results have not yet been published; the corresponding plots
have therefore been removed from the publicly distributed version of this talk.

Equilibrium CO, mole fraction measurements show:

= Good agreement with model results (AramcoMech 3.0, USC Mech II),
within uncertainty bounds (*=9.2%)

Equilibrium H,O mole fraction measurements show:

= Satisfactory agreement with model results, within uncertainty bounds
(£10%)
> Higher scatter likely due to background signal fluctuations
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Ill. NTC Regime: iso-octane

Iso-octane burning velocity
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Ill. NTC Regime: iso-octane

Iso-octane burning velocity
measurements in O,/N,/He:

— i 0) 0)
. CD = 0.9 fuel in 18% 02’ 41% |\|2’ The NTC-regime iso-octane flame speed
419% He results have not yet been published, and have
therefore been removed from the publicly
= 500-900 K’ 1 atm (15%) distributed version of this talk.

1. Burning velocity increases w/ T (500-600 K) =
» Results 20-30% low of simulation

2. Burning velocity T dependence stronger

than modeled (600-750 K) The NTC-regime iso-octane
3. Negative T dependence of burning velocity flgme speed re;ults show
(750-820 K) different behaviors over 4

Istin mperature ran
4. Excellent model agreement, then stronger T distinct temperature ranges

dependence than modeled (820-900 K) _
First direct experimental evidence of NTC flame speed behavior




Summary & Future Work

Summary:

= High-temperature CH,, C,H;, and C;Hg flame speeds show close agreement
with literature and model results

= Laser absorption diagnostics were successfully deployed to measure
temperature, CO,, and H,O

= |so-octane flame speed results show evidence of NTC behavior — the first
such experimental observation

Future work:

= Extend high-temperature flame speed data sets
> Additional temperatures, pressures, equivalence ratios

= Use quantitative laser diagnostics to probe NTC flame speed behavior (cool
flames?)

= Simulate results as spherically expanding flames using DNS
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