3rd Int. Workshop on Laminar Burning Velocity, Lisbon April 14, 201

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

LES of industrial turbulent reacting flows: modeling effects and challenges

CERFACS - CFD combustion team, Toulouse ² CNRS - IMFT, Toulouse [†] http://www.cerfacs.fr/~lgicquel

www.cerfacs.fr

Context and Objectives of the CFD combustion team @ CERFACS

Combustion: An engineering science at the cross-road between *chemistry* & *fluid mechanics* with strong *technological / industrial and societal* implications

I] HPC & turbulent reacting flow CFD

Turbulent reacting flows have been from the beginning studied and theoretically addressed as true/pure multi-scale multi-physics problems:

Recent industrial achievement by SAFRAN SHE

J. Lamouroux et al (SAFRAN HE) - presented at the ASME TurboExpo conference, Charlotte june 2017.

- Industrial burner with I.IB elements for the geometry
- Turbulent compressible, gaseous reacting LES

Selective refinement (chamber only) based on the *Pampa* Library using MMG3D (collaboration with *C. Lachat & C. Dobrzynski, A. Froelhy* from INRIA)

Case	# of cells	360 equiv # of cells	Δ_{cell}	\mathcal{F}_{max}
mesh 1	11M	220M	Δ_0	100
mesh 2	33M	660M	$\Delta_0/2$	50
mesh 3	220M	4400M	$\Delta_0/4$	25
mesh 4	1030M	20600M	$\Delta_0/7$	14

CCRT supercomputing center: COBALT grand challenges

CERFACS

Twelve years to do:

- ~I 500 times on the number of cells and ~250 times on the number of procs
- improved reduced chemistry model PLUS NOx and CO (crude models)
- homogeneous vs heterogeneous multi perforated plate model
- full transfer to the industry

CERFACS

Layout of the talk

I] HPC & turbulent reacting flow CFD

II] Ignition / transient turbulent reacting flows

2.1 GT context: engine ignition prediction 2.2 Explosion: deflagrating fronts

III] Difficulty of the initial phase

IV] GT applications: emission predictions & multi phase flows

Conclusions and perspectives

Il] Ignition / transient turbulent reacting flows

Ignition = fully transient laminar/turbulent reacting flow

Aeronautical GT's:

- Ignition = first design phase
 - => light around time: fctt of the
 - burner size...

Fuel plants:

- Security issue / risk management

Deepwater horizon, 2010

Buncefield, 2005

Common features & differences

II.I] Light around phase - turbulent combustion dominated problem

ZCERFACS

Axial flame propagation

9

• Evolution of the luminous signal (CH emissions vs. Heat release images):

CERFACS

• Ignition times for each injector

• Ignition time between two consecutive injectors

- Good estimation of the ignition times for each injectors
- 2 distinct propagation modes (inj/inj propagation times)

II.2] Deflagration problem - fully transient and transitioning problem

SGS modeling impact on the predictions

Layout of the talk

I] HPC & turbulent reacting flow CFD

II] Ignition / transient turbulent reacting flows

2.1 GT context: engine ignition prediction 2.2 Explosion: deflagrating fronts

III] Difficulty of the initial phase

Fresh

IV] GT applications: emission predictions & multi phase flows

Conclusions and perspectives

III] Initial phase issues

Major issues:

- it is not clear what is the initial state of these flow problems
- we do not know what and how much energy is deposited...
 - => pseudo deterministic / stochastic description
 - => difficult to know what really counts...

Very few data is available on the experimental side and most of the time it is

time or spatially integrated....

1/ Potential importance in deflagration simulations:

- Stretch definitely can play a role in the early Instants (always spheric and laminar)

- Thermo diffusive instabilities can appear here !!
 - \Rightarrow Impact on the local transition to turbulence (?)
- Stretch is also present when the flame front reaches obstacles...

2/ Potential importance in GT simulations:

Darmstadt (Klein et al., Flow Turbulenc Combust, 2008)

- Stretch is rapidly present and strongly impact the initial kernel behavior (quenching...)
- As the flame propagates in the turbulent flow, it faces very different turbulent flow states...

Potential chemistry modeling issues

Thermo-chemical model and its impact

Flame propagation: C3H8, 0 array

φ =1	SL ⁰	T _{ad}
GRI-MECH	38.4 cm/s	2275 K
2-steps	38.4 cm/s	2289 K
1-step	38.4 cm/s	2400 K

- $\phi = 1$: same laminar flame speed
- 1-step adiab. Temp. overestimated by 5%
 - $\Rightarrow Sd = \rho_{GF} / \rho_{GB} * S_L^0$ overshot

Characteristic diag.: C3H8, 3-arrays

Layout of the talk

I] HPC & turbulent reacting flow CFD

II] Ignition / transient turbulent reacting flows

2.1 GT context: engine ignition prediction 2.2 Explosion: deflagrating fronts

III] Difficulty of the initial phase

IV] GT applications: emission predictions & multi Flame phase flows

Conclusions and perspectives

IV] Application to a GT: pollutant emissions & multi-phase flows

Today reduced chemistry schemes are accessible in terms of tools and CPU⁴⁻⁶

19

LES OH PLIF [1] OH Concentration

Heat release rate

Exhaust pollutant concentrations

NO

- Satisfactory prediction
 - Slight under-prediction
- Trend correctly recovered
- CO
 - Significant over-prediction

Deterioration of **NO prediction**

- Improvement of temperature prediction
- Significant improvement of CO
 prediction at the exit: driven by
 equilibrium

ECERFACS

Current progresses in LES @ CERFACS include more and more complexity

=> In terms of chemistry: ARC schemes needed to predict pollutants will improve the quality of the laminar flame speed predictions for simple flames provided that these schemes are properly constructed from adequate reference schemes.

=> ARC will however not alleviate the dependency of the turbulent combustion closure to the laminar flame speed (and thickness) for non-planar flames... i.e. how to properly incorporate stretch and strain effects

=> Multi-phase flames clearly add complexity: depending on the droplets, different regimes of combustion appear and their effect on the flame thickness and speed are not fully understood...

