

New targets for laminar flame speed determination and kinetic schemes assessment

F. Halter, G. Dayma, C. Bariki, P. Dagaut, C. Chauveau

CNRS ICARE - Université d'Orléans

Z. Chen, Y. Wang

State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China

2. SET-UP

2,1 Flame visualisation 2,2 Rf and P trace

3. Validation & limits 3,1 Heat losses 3,2 Stretch

4. RESULTS4,1 Flame speed
4,2 New target
4,3 New method

5. CONCLUSIONS

Introduction

2. SET-UP

2,1 Flame visualisation 2,2 Rf and P trace

3. Validation & limits 3,1 Heat losses 3,2 Stretch

4. RESULTS4,1 Flame speed 4,2 New target 4.3 New method

full **OPTI**cal access **Perfectly spheR**ical combustion chaMber (OPTIPRIM)

5. CONCLUSIONS

2. SET-UF

2,1 Flame visualisation 2,2 Rf and P trace

3. Validation & limits 3,1 Heat losses 3,2 Stretch

4. RESULTS4,1 Flame speed4,2 New target4,3 New method

Experimental set-up

*T*₀ (К)

300

300

Fuel

 CH_4

 CH_4

 $P_0(bar)$

1

1

2. Set-up

2,2 Rf and P trace

3. Validation & limits3,1 Heat losses3,2 Stretch

4. RESULTS4,1 Flame speed
4,2 New target
4,3 New method

5. CONCLUSIONS

Flame propagation

CH ₄ /a	air at ϕ = 1.0

2. SET-UP2.1 Flame visualisation2.2 Rf and P trace

3. Validation & limits 3,1 Heat losses 3,2 Stretch

4. RESULTS4,1 Flame speed4,2 New target4,3 New method

5. CONCLUSIONS

Flame visualisation

2. SET-UP2,1 Flame visualisation2,2 Rf and P trace

3. Validation & limits 3,1 Heat losses 3,2 Stretch

4. RESULTS4,1 Flame speed
4,2 New target
4,3 New method

5. CONCLUSIONS

Flame radius & pressure evolutions

2. SET-UP

2,1 Flame visualisation 2,2 Rf and P trace

3. Validation & limit 3,1 Heat losses 3,2 Stretch

4. RESULTS 4,1 Flame speed 4,2 New target 4,3 New method

5. CONCLUSIONS

Radiation and heat losses to the walls

ADI-wall adiabatic walls

- ADI adiabatic model with no radiative loss
- *OTM* optically thin model considering emission but no absorption
- *SNB* statistical narrow band model with both radiation emission and absorption

2. SET-UP

2,1 Flame visualisation 2,2 Rf and P trace

3. Validation & limit

3,1 Heat losses 3,2 Stretch

4. RESULTS4,1 Flame speed 4,2 New target 4,3 New method

Stretch effect

Fuel	Т ₀ (К)	Р ₀ (bar)	ф (-)	S _u ⁰ (m/s)	<i>L_u</i> (mm)
CH ₄	300	1	1	0.36	-0.13
CH ₄	300	1	1.3	0.22	0.3

5. CONCLUSIONS

2. SET-UP

2,1 Flame visualisation 2,2 Rf and P trace

3. Validation & limits 3,1 Heat losses 3,2 Stretch

4. RESULTS

4,1 Flame speed

4,2 New target

4,3 New method

5. CONCLUSIONS

Flame speed evaluation

Species

53

38

111

58

68

92

Mechanism

GRI Mech 3.0 [1]

FFCM-1 [2]

USC Mech II [3]

UCSD Mech [4]

DTU Mech [5]

HP Mech [6]

50

[1] G. P. Smith, et al. , <u>http://www.me.berkeley.edu/gri_mech/</u>

[2] G. P. Smith, et al., <u>http://nanoenergy.stanford.edu/ffcm</u>, (2016)
[3] H. Wang, et al., <u>http://ignis.usc.edu/USC_Mech_II.htm</u>, (2007)

 [4] Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (<u>http://combustion.ucsd.edu</u>)
 [5] H. Hashemi, et al., High-pressure oxidation of methane, *Combustion and Flame*, 172:349-64 (2016)

[5] H. Hashemi, et al., High-pressure oxidation of methane, Combustion and Flame, 172:349-64
 [6] <u>http://engine.princeton.edu/mechanism/HP-Mech.html</u>,

2. SET-UP

2,1 Flame visualisation 2,2 Rf and P trace

3. Validation & limits 3,1 Heat losses 3,2 Stretch

4. RESULTS

4,1 Flame speed 4.2 New target 4.2 New method

4,3 New method

5. CONCLUSIONS

Alternative method

2. SET-UP

2,1 Flame visualisation 2,2 Rf and P trace

3. Validation & limits 3,1 Heat losses 3,2 Stretch

4. RESULTS 4,1 Flame speed 4 7 New tarnet

4,3 New method

5. CONCLUSIONS

Pressure evolutions

2. SET-UP

Flame speed as a function of pressure

$$P_{n+1} = P_n + \left(\left(R_{f,n+1} - R_{f,n} \right) - S_{u,n} \cdot (t_{n+1} - t_n) \right) \cdot \frac{3 \gamma_{u,n} P_n R_{f,n}^2}{R_c^3 - R_{f,n}^3} \qquad + \qquad S_u = f(P, T)$$

- 2,1 Flame visualisation 2,2 Pressure trace
- **3. Validation & limits** 3,1 Heat losses 3,2 Stretch

4. RESULTS

4,1 Flame speed 4,2 New target 4,3 New method

5. CONCLUSIONS

2. SET-UP

- 2,1 Flame visualisation 2,2 Pressure trace
- **3. Validation & limits** 3,1 Heat losses 3,2 Stretch

4. RESULTS 4,1 Flame speed 4,2 New target 4,3 New method

Conclusions

- full OPTIcal access Perfectly spheRical combustIon chaMber
- **Simultaneous** recording of the **pressure** inside the chamber and, fully innovative, of the flame **radius** until the walls
- Accurate flame speed as a function of pressure/temperature evolution
- **Pressure** is the correct target to assess the accuracy of a kinetic mechanism
- A relative error lower than ± 5 % over almost the entire pressure range was obtained
- The unmatched accuracy allows to **optimize** kinetic schemes