New targets for laminar flame speed determination and kinetic schemes assessment

F. Halter, G. Dayma, C. Bariki, P. Dagaut, C. Chauveau

CNRS ICARE - Université d’Orléans

Z. Chen, Y. Wang

State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
Introduction

1. INTRODUCTION

2. SET-UP
2.1 Flame visualisation
2.2 Rf and P trace

3. Validation & limits
3.1 Heat losses
3.2 Stretch

4. RESULTS
4.1 Flame speed
4.2 New target
4.3 New method

5. CONCLUSIONS
1. INTRODUCTION

2. SET-UP
 2.1 Flame visualisation
 2.2 Rf and P trace

3. Validation & limits
 3.1 Heat losses
 3.2 Stretch

4. RESULTS
 4.1 Flame speed
 4.2 New target
 4.3 New method

5. CONCLUSIONS

full OPTical access Perfectly spheRical combustion chaMber (OPTIPRIM)
Experimental set-up

<table>
<thead>
<tr>
<th>Fuel</th>
<th>T_0 (K)</th>
<th>P_0 (bar)</th>
<th>ϕ (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH_4</td>
<td>300</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CH_4</td>
<td>300</td>
<td>1</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Flame propagation

CH_4/air at \(\phi = 1.0 \)
1. INTRODUCTION

2. SET-UP

2.1 Flame visualisation

2.2 Rf and P trace

3. Validation & limits

3.1 Heat losses

3.2 Stretch

4. RESULTS

4.1 Flame speed

4.2 New target

4.3 New method

5. CONCLUSIONS
1. INTRODUCTION
2. SET-UP
 2.1 Flame visualisation
 2.2 Rf and P trace
3. Validation & limits
 3.1 Heat losses
 3.2 Stretch
4. RESULTS
 4.1 Flame speed
 4.2 New target
 4.3 New method
5. CONCLUSIONS
Radiation and heat losses to the walls

ADI-wall adiabatic walls

ADI adiabatic model with no radiative loss

OTM optically thin model considering emission but no absorption

SNB statistical narrow band model with both radiation emission and absorption
1. INTRODUCTION

2. SET-UP
2.1 Flame visualisation
2.2 Rf and P trace

3. Validation & limits
3.1 Heat losses
3.2 Stretch

4. RESULTS
4.1 Flame speed
4.2 New target
4.3 New method

5. CONCLUSIONS

Stretch effect

<table>
<thead>
<tr>
<th>Fuel</th>
<th>(T_0) (K)</th>
<th>(P_0) (bar)</th>
<th>(\phi) (-)</th>
<th>(S_{u0}) (m/s)</th>
<th>(L_u) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH_4)</td>
<td>300</td>
<td>1</td>
<td>1</td>
<td>0.36</td>
<td>-0.13</td>
</tr>
<tr>
<td>(CH_4)</td>
<td>300</td>
<td>1</td>
<td>1.3</td>
<td>0.22</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[K \text{ [s}^{-1} \] \]
Flame speed evaluation

\[S_u = \frac{dR_f}{dt} - \frac{(R_c^3 - R_f^3)}{3 \gamma_u R_f^2 P} \frac{dP}{dt} \]

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Species</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRI Mech 3.0 [1]</td>
<td>53</td>
<td>325</td>
</tr>
<tr>
<td>USC Mech II [3]</td>
<td>111</td>
<td>784</td>
</tr>
<tr>
<td>DTU Mech [5]</td>
<td>68</td>
<td>631</td>
</tr>
<tr>
<td>HP Mech [6]</td>
<td>92</td>
<td>625</td>
</tr>
</tbody>
</table>

1. INTRODUCTION
2. SET-UP
2.1 Flame visualisation
2.2 Rf and P trace
3. Validation & limits
3.1 Heat losses
3.2 Stretch
4. RESULTS
4.1 Flame speed
4.2 New target
4.3 New method
5. CONCLUSIONS

Alternative method

\[S_u = \frac{dR_f}{dt} - \frac{(R_c^3 - R_f^3)}{3\gamma_u R_f^2 P} \frac{dP}{dt} \]

\[S_{u,n} = \frac{R_{f,n+1} - R_{f,n}}{t_{n+1} - t_n} - \frac{R_c^3 - R_{f,n}^3}{3\gamma_u P_n R_{f,n}^2} \frac{P_{n+1} - P_n}{t_{n+1} - t_n} \]

\[R_{f,n+1} = R_{f,n} + S_{u,n}(t_{n+1} - t_n) + \frac{R_c^3 - R_{f,n}^3}{3\gamma_u P_n R_{f,n}^2} (P_{n+1} - P_n) \]

\[P_{n+1} = P_n + \left((R_{f,n+1} - R_{f,n}) - S_{u,n}(t_{n+1} - t_n)\right) \cdot \frac{3\gamma_u P_n R_{f,n}^2}{R_c^3 - R_{f,n}^3} \]
1. INTRODUCTION

2. SET-UP
2.1 Flame visualisation
2.2 Rf and P trace

3. Validation & limits
3.1 Heat losses
3.2 Stretch

4. RESULTS
4.1 Flame speed
4.2 New target
4.3 New method

5. CONCLUSIONS

\[
\begin{align*}
 P_{n+1} &= P_n + \left((R_{f,n+1} - R_{f,n}) - S_{u,n} \cdot (t_{n+1} - t_n) \right) \cdot \frac{3 \gamma_{u,n} P_n R_{f,n}^2}{R_c^3 - R_{f,n}^3} \\
 T_{n+1} &= T_n \left(\frac{P_n}{P_{n+1}} \right)^{1-\gamma_{u,n}}/\gamma_{u,n}
\end{align*}
\]
Flame speed as a function of pressure

\[P_{n+1} = P_n + \left(R_{f,n+1} - R_{f,n} \right) - S_{u,n} \cdot (t_{n+1} - t_n) \cdot \frac{3 \gamma_{u,n} P_n R_{f,n}^2}{R_c - R_{f,n}^3} + S_u = f(P, T) \]
Conclusions

- full OPTIcal access Perfectly spheRical combustIon chaMber
- **Simultaneous** recording of the pressure inside the chamber and, fully innovative, of the flame radius until the walls
- Accurate flame speed as a function of pressure/temperature evolution
- **Pressure** is the correct target to assess the accuracy of a kinetic mechanism
- A relative error lower than ±5 % over almost the entire pressure range was obtained

- The unmatched accuracy allows to optimize kinetic schemes