

Propagation of laminar flames of light and heavy fuels at engine-relevant conditions: state-of-theart and future direction

Ashkan Movaghar, Christodoulos Xiouris, Tailai Ye, Robert Lawson, Fokion Egolfopoulos University of Southern California, Los Angeles, California

Jagannath Jayachandran

Worcester Polytechnic Institute, Worcester, Massachusetts

3rd Int. Workshop on Laminar Burning Velocity April 14, 2019 Lisbon, Portugal

Engine-relevant thermodynamic conditions

T_u: Unburned mixture temperature

Laminar flame speed studies: light fuels

Laminar flame speed studies: heavy fuels

Legacy experiments for measuring laminar flame speeds

T_u: Unburned mixture temperature

Spherically expanding flame constant-volume method (SEF-CONV)

() WPI

- Proposed by Lewis and von Elbe¹ in the 1930s
- > Advanced by Bradley and Mitcheson², Metghalchi and Keck³, and

- [1] B. Lewis , G. von Elbe, J. Chem. Phys. 2 (1934) 283–290.
- [2] D. Bradley, A. Mitcheson, Combust. Flame 26 (1976) 201-217.
- [3] M. Metghalchi, J.C. Keck, Combust. Flame 38 (1980) 143-154.

Not a direct measurement!

- () WPI
- We have to derive flame speeds from pressure vs time recordings
- Assuming that the flame is spherical and the unburned gas is isentropically compressed¹,

- Sources of uncertainty
 - Flame area growth due to cellular instability
 - Influence of flame stretch
 - Accuracy of the R_f (P) model
 - Effect of transient pressure rise?

[1] E.F. Fiock, C.F. Marvin, Chem. Rev. 21 (1937) 367-387.

Effect of flame stretch

Accuracy of the R_f (P) model

- Linear relationship between fractional pressure rise and burned gas mass fraction
- Thermodynamics-based models: Two zone, Multi-zone
- Hybrid ThermoDynamic-Radiation model (HTDR): includes radiation heat loss from the burned gas

$$S_{u} = \left[\frac{dR_{f}}{dP} - \left(\frac{R_{w}^{3} - R_{f}^{3}}{3R_{f}^{2}Y_{u}}\right)\frac{1}{P}\right] \times \frac{dP}{dt}$$

modeled: R_{f} (P)

> Perform DNS to obtain $\frac{dP}{dt}$ and $R_f(P)$: detailed kinetics and transport

What is the level of accuracy needed for R_f(P)?

Accuracy of the R_f (P) model

Accuracy of the R_f (P) model: case studies

Accuracy of the R_f (P) model: case studies

2. Dissociation (evolving thermodynamic state) of burned gas

Effect of transient pressure rise

Experimental and Modeling Results

 $\phi = 1.05$ 1.05C_{11.37}H_{21.87} + 16.84O₂ + 44.75N₂+ 61.13He

Flame propagating into a reacting mixture

Unique steady-state solution does not exist: no unique eigen value

Very important phenomena but interpreting experimental data requires advanced diagnostics and computational capabilities

A. Ansari, J. Jayachandran, F.N. Egolfopoulos, Pro. Combust. Inst. 37 (2019) 1513-1520.

Physics at high pressures

Simeoni et al., The Widom line as the crossover between liquid-like and gas-like behavior in supercritical fluids, Nature Physics, vol 6 (2010).

Engine conditions vs thermodynamic conditions

NIST chemistry Webbook: Thermophysical properties of fluid systems

Engine conditions vs thermodynamic conditions

Engine conditions vs thermodynamic conditions

